为了提高串行数据传输的可靠性,现在很多更高速率的数字接口采用对数据进行编码后再做并/串转换的方式。编码的方式有很多,如8b/9b编码、8b/10b编码、64b/66b编码、128b/130b编码等,下面以当下流行的ANSI8b/10b编码为例进行介绍。
在ANSI8b/10b编码方式中,8bit的数据先通过相应的编码规则转换成10bit的数据,再进行并/串转换;接收端收到信号后先把串行数据进行串/并转换得到10bit的数据,再通过10bit到8bit的解码得到原始传输的8bit数据。因此,如果发送端并行侧的数据速率是8bit×100Mbps,通过8b/10b编码和并/串转换后的串行侧的数据速率就是1bit×1Gbps。8b/10b编码方法早由IBM发明,后来成为ANSI标准的一部分(ANSIX3.230-1994,clause11),并在通信和计算机总线上广泛应用。表1.1是ANSI8b/10b编码表的一部分,以数据0x00为例, 数字信号处理系统架构分析;甘肃数字信号测试修理
值得注意的是,在同步电路中,如果要得到稳定的逻辑状态,对于采样时钟和信号间的时序关系是有要求的。比如,如果时钟的有效边沿正好对应到数据的跳变区域附近,可能会采样到不可靠的逻辑状态。数字电路要得到稳定的逻辑状态,通常都要求在采样时钟有效边沿到来时被采信号已经提前建立一个新的逻辑状态,这个提前的时间通常称为建立时间(SetupTime);同样,在采样时钟的有效边沿到来后,被采信号还需要保持这个逻辑状态一定时间以保证采样数据的稳定,这个时间通常称为保持时间(HoldTime)。如图1.6所示是一个典型的D触发器对建立和保持时间的要求。Data信号在CLK信号的有效边沿到来t、前必须建立稳定的逻辑状态,在CLK有效边沿到来后还要保持当前逻辑状态至少tn这么久,否则有可能造成数据采样的错误。甘肃数字信号测试修理模拟信号和数字信号之间的区别吗?
数字信号的时钟分配(ClockDistribution)
前面讲过,对于数字电路来说,目前绝大部分的场合都是采用同步逻辑电路,而同步逻辑电路中必不可少的就是时钟。数字信号的可靠传输依赖于准确的时钟采样,一般情况下发送端和接收端都需要使用相同频率的工作时钟才可以保证数据不会丢失(有些特殊的应用中收发端可以采用大致相同频率工作时钟,但需要在数据格式或协议层面做些特殊处理)。为了把发送端的时钟信息传递到接收端以进行正确的信号采样,数字总线采用的时钟分配方式大体上可以分为3类,即并行时钟、嵌入式时钟、前向时钟,各有各的应用领域。
采用AC耦合方式的另一个好处是收发端在做互连时不用太考虑直流偏置点的互相影响, 互连变得非常简单,对于热插拔的支持能力也更好。
(3)有利于信号校验。很多高速信号在进行传输时为了保证传输的可靠性,要对接收 到的信号进行检查以确认收到的信号是否正确。在8b/10bit编码表中,原始的8bit数据总 共有256个组合,即使考虑到每个Byte有正负两个10bit编码,也只需要用到512个10bit 的组合。而10bit的数据总共可以有1024个组合,因此有大约一半的10bit组合是无效的 数据,接收端一旦收到这样的无效组合就可以判决数据无效。另外,前面介绍过数据在传输 过程中要保证直流平衡, 一旦接收端收到的数据中发现违反直流平衡的规则,也可以判决数 据无效。因此采用8b/10b编码以后数据本身就可以提供一定的信号校验功能。需要注意的是,这种校验不是足够可靠,因为理论上还是可能会有几个bit在传输中发生了错误,但 是结果仍然符合8b/10b编码规则和直流平衡原则。因此,很多使用8b/10b编码的总线还 会在上层协议上再做相应的CRC校验(循环冗余校验)。 数字信号是一种信号与自变量和因变量的分散。变量通常用整数表示的,而因变量的数量有限的数字表示。
对于真实的数据信号来说,其频谱会更加复杂一些。比如伪随机序列(PRBS)码流的频谱的包络类似一个sinc函数。图1.4是用同一个发送芯片分别产生的800Mbps和2.5Gbps的PRBS信号的频谱,可以看到虽然输出数据速率不一样,但是信号的主要频谱能量集中在4GHz以内,也并不见得2.5Gbps信号的高频能量就比800Mbps的高很多。
频谱仪是对信号能量的频率分布进行分析的准确的工具,数字工程师可以借助频谱分析仪对被测数字信号的频谱分布进行分析。当没有频谱仪可用时,我们通常根据数字信号的上升时间估算被测信号的频谱能量:
信号的比较高频率成分=0.5/信号上升时间(10%~90%)
或者当使用20%~80%的上升时间标准时,计算公式如下:
信号的比较高频率成分=0.4/信号上升时间(20%~80%) 数字信号的眼图分析(Eye Diagram Analysis);江苏数字信号测试高速信号传输
数字信号上升时间是示波器中进行上升时间测量例子,光标交叉点指示出上升时间测量的起始点和结束点的位置;甘肃数字信号测试修理
数字信号的均衡(Equalization)
前面介绍了预加重或者去加重技术对于克服传输通道损耗、改善高速数字信号接收端信号质量的作用,但是当信号速率进一步提高或者传输距离更长时,**在发送端已不能充分补偿传输通道带来的损耗,这时就需要在接收端同时使用均衡技术来进一步改善信号质量。所谓均衡,是在数字信号的接收端进行的一种补偿高频损耗的技术。常见的信号均衡技术有3种:CTLE(ContinuousTimeLinearEqualization)、FFE(FeedForwardEqualization)和DFE(DecisionFeedbackEqualization).CTLE是在接收端提供一个高通滤波器,这个高通滤波器可以对信号中的主要高频分量进行放大,这一点和发送端的预加重技术带来的效果是类似的。有些速率比较高的总线,为了适应不同链路长度损耗的影响,还支持多挡不同增益的CTLE均衡器。图1.35是PCle5.0总线在接收端使用的CTLE均衡器的频响曲线的例子。 甘肃数字信号测试修理
我们经常使用到的总线根据数据传输方式的不同,可以分为并行总线和串行总线。 并行总线是数字电路中早也是普遍采用的总线结构。在这种总线上,数据线、地址线、控制线等都是并行传输,比如要传输8位的数据宽度,就需要8根数据信号线同时传输;如果要传输32位的数据宽度,就需要32根数据信号线同时传输。除了数据线以外,如果要寻址比较大的地址空间,还需要很多根地址线的组合来不同的地址空间。图1.7是一个典型的微处理器的并行总线的工作时序,其中包含了1根时钟线、16根数据线、16根地址线以及一些读写控制信号。 数字信号的眼图分析(Eye Diagram Analysis);校准数字信号测试配件 什么是...