电机状态监测和故障诊断技术是一种了解掌握电机在使用过程中状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术,电机状态监测与故障诊断技术包括识别电机状态监测和预测发展趋势两方面。设备状态是指设备运行的工况,由设备运行过程中的各种性能参数以及设备运行过程中产生的二次效应参数和产品质量指标参数来描述。设备状态的类型包括:正常、异常和故障三种。设备状态监测是通过测定以上参数,并进行分析处理,根据分析处理结果判定设备状态。对设备进行定期或连续监测,包括采用各种测试、分析判别方法,结合设备的历史状况和运行条件,弄清设备的客观状态,获取设备性能发展的趋势规律,为设备的性能评价、合理使用、安全运行、故障诊断及设备自动控制打下基础。工业监测数据可以为生产调整提供科学依据。宁波性能监测介绍
针对传统方法通常无法自适应提取特征, 同时需要一定的离线数据训练得到检测模型, 但目标对象在线场景下采集到的数据有限, 且其数据分布与训练数据的分布可能因随机噪声、变工况等原因而存在差异, 导致离线训练的模型并不完全适合于在线数据, 容易降低检测结果的准确性; 其次, 上述方法通常采用基于异常点的检测算法, 未充分考虑样本前后的时序关系, 容易因数据微小波动而产生误报警, 降低检测结果的鲁棒性; 再次, 为降低误报警, 这类方法需要反复调整报警阈值. 此外, 基于系统分析的故障诊断方法利用状态空间描述建立机理模型, 可获得理想的诊断和检测结果, 但这类方法通常需要提前知道系统运动方程等信息, 对于轴承运行来说, 这类信息通常不易获知. 近年来, 深度神经网络已被成功应用于早期故障特征的自动提取和识别, 可自适应地提取信息丰富和判别能力强的深度特征, 因此具有较好的普适性. 但是, 这类方法一方面需要大量辅助数据进行模型训练, 而历史采集的辅助数据与目标对象数据可能存在较大不同, 直接训练并不能有效提升在线检测的特征表示效果; 另一方面, 在训练过程中未能针对早期故障引发的状态变化而有目的地强化相应特征表示. 因此, 深度学习方法在早期故障在线监测中的应用仍存在较大的提升空间.杭州混合动力系统监测数据工业监测数据可以帮助企业优化生产流程和降低成本。
传统方法通常无法自适应提取特征, 同时需要一定的离线数据训练得到检测模型, 但目标对象在线场景下采集到的数据有限, 且其数据分布与训练数据的分布可能因随机噪声、变工况等原因而存在差异, 导致离线训练的模型并不完全适合于在线数据, 容易降低检测结果的准确性; 其次, 上述方法通常采用基于异常点的检测算法, 未充分考虑样本前后的时序关系, 容易因数据微小波动而产生误报警, 降低检测结果的鲁棒性; 再次, 为降低误报警, 这类方法需要反复调整报警阈值. 此外, 基于系统分析的故障诊断方法利用状态空间描述建立机理模型, 可获得理想的诊断和检测结果, 但这类方法通常需要提前知道系统运动方程等信息, 对于轴承运行来说, 这类信息通常不易获知. 近年来, 深度神经网络已被成功应用于早期故障特征自动提取和识别, 可自适应地提取信息丰富和判别能力强的深度特征, 因此具有较好的普适性. 但是, 这类方法一方面需要大量辅助数据进行模型训练, 而历史采集的辅助数据与目标对象数据可能存在较大不同, 直接训练并不能有效提升在线检测的特征表示效果; 另一方面, 在训练过程中未能针对早期故障引发的状态变化而有目的地强化相应特征表示. 因此, 深度学习方法在早期故障在线监测中的应用仍存在较大的提升空间.
物联网技术为设备状态监测诊断带来了设备状态无线监测、高速数据传输、边缘计算和精细化诊断分析等先进技术。本项目相关的状态监测技术是要解决海量终端(传感器数据)的联接、管理、实时分析处理。关键技术包含海量数据的采集和传输技术、信号处理技术和边缘计算技术。对设备进行诊断的目的,是了解设备是否在正常状态下运转,为此需测定有关设备的各种量,即信号。如果捕捉到的信号能直接反映设备的问题,如温度的测值,则与设备正常状态伪规定值相比较即可。测到的声波或振动信号一般都伴有杂音和其他干扰,放大多需滤波。回转机械的振动和噪声就是一例。一般测到的波形和数值没有一定规则,需要把表示信号特征的量提取出来,以此数值和信号图象来表示测定对象的状态就是信号处理技术其次边缘计算与云计算协同工作。云计算聚焦非实时、长周期数据的大数据分析,能够在周期性维护、故障隐患综合识别分析,产品健康度检查等领域发挥特长。边缘计算聚焦实时、短周期数据的分析,能更好地支撑故障的实时告警,快速识别异常,毫秒级响应;此外,两者还存在紧密的互动协同关系。边缘计算既靠近设备,更是云端所需数据的采集单元,可以更好地服务于云端的大数据分析。盈蓓德科技的客户主要来自汽车、船舶等多个行业。
电机监控系统适用于石油、化工、电力、煤炭、冶金、造纸、水泥等行业,可以实时对低压电动机的运行状态进行监测,对电机各类故障进行监测并存储故障信息,可以生成各类实时曲线(电压曲线、电流曲线等),为电机节能提供依据,并可实现电机节能管理。系统特点1实时监测电机回路石化、电力、水泥等电机用量大户,需要对电机进行实时监测,监测内容包括电机的电流、电压、电能、频率、电机状态(起动、停止、报警、故障)等。在要求较高的场所还要对工艺参数进行监测,例如温度、压力等。本系统不仅可以监测电机电压、电流还能做能耗统计,工艺参数监测,可以大幅提高企业自动化程度。2集中监控,利于节能马达监控系统对用电大户电机进行实时能耗监测,监测到的数据可以作为节能依据,并可通过系统进行节能控制,利于电机节能应用。3提高自动化水平.电机监控系统是应用电力自动化技术、计算机技术和信息传输技术,集保护、监测、控制、通信等功能于一体的综合系统,监测工作需要关注消费者的购买行为和偏好,以提高销售效果。宁波性能监测介绍
工业监测技术可以帮助企业降低能源消耗和环境污染。宁波性能监测介绍
刀具损坏的形式主要是磨损和破损。在现代化的生产系统(如FMS、CIMS等)中,当刀具发生非正常的磨损或破损时,如不能及时发现并采取措施,将导致工件报废,甚至机床损坏,造成很大的损失。因此,对刀具状态进行监控非常重要。刀具破损监测可分为直接监测和间接监测两种。所谓直接监测,即直接观察刀具状态,确认刀具是否破损。其中很典型的方法是ITV(IndustrialTelevision,工业电视)摄像法。间接监测法即利用与刀具破损相关的其它物理量或物理现象,间接判断刀具是否已经破损或是否有即将破损的先兆。这样的方法有测力法、测温法、测振法、测主电机电流法和测声发射法等。宁波性能监测介绍