电学计量:应用设备、仪表和电学测量仪器,对被测量采用相应的方法进行定量分析,确保计量学分支的准确和电学量测量的统一,就是电学计量。作为一种能源,人们在认识电能后,将其应用与科学技术的研究中,而点与磁性材料和磁场等的存在有着密不可分的关联。和电学现象相关的物理量为电学两,它分为磁学量和电学量,在不断探索电学应用的过程中,大量的电学设备、仪表、测量仪器就此诞生。电学计量所研究的主要内容如下:研究并制定出相应的技术规范、检定规程、检定系统等,对进行电学量量值传递的专门测量装置和标准量具进行研究,对测量电学量的方法进行研究,对电学学单位制的确定,对于电学量相关的物理常数进行精密测定。以上研究按照定义保存、复现电学学单位的计量标准和基准进行。电学计量分为电学量计量和磁学量计量,根据米、千克、秒三个基本单位。宁波电学计量机构

电学计量的主要内容:非电量的电测量及静电、电气和环境安全等电学干扰参数也是电学计量的重要内容。按工作频率电学计量分直流计量和交流计量,随着科学技术的发展,电学计量从直流、低频段逐步发展到高频、微波、毫米波、亚毫米波。世界上不少国家已将以电子学领域中电学量为对象的计量分离出来,成为计量学的另一分支——电子计量。电学计量在计量领域有其独特的优点:电学量可以直接进行检测;电学计量测试所采用的测量方法具有较高的准确度和灵敏度。LCR测试仪校准电学优点:现代计量的各个领域,都借助于各种传感器把被测量变换成电学信号进行处理。

电学计量:电学计量保存、复现、传递的量主要由直流电压,直流电流,交流电压,交流电流,直流电阻,交流电阻,电感,电容,电功率,电能,相位,频率,电荷量,损耗因数,功率因素,时间常数等。保存、复现电学量的计量器具主要有实物量和计量仪器两大类。作为计量基准和计量标志的主要有约瑟夫逊电压自然基准,霍尔电阻自然基准,标准电池,直流标准电阻,RLC测量仪,高阻计,微欧计,直流电位差计,交流电位差计,数字多用表,多功能标准源,交直流转换仪,指示表,直流功率表,交流功率表,功率因数表,电能表,分压箱,分流器,仪用互感器,测量放大器,转换器,感应分压器,霍尔电流传感器等。
电学计量标准:因工作方式的不同,传感器也有所不同。并且根据不同的信号输出方式,又分为了模拟、开关及数字等不同类型的传感器。通常来说,单一传感器只用于单一物理量的测量使用。随着科技的迅猛发展,物理量被测的需求也在逐渐提升,传统的单一传感器测量方式已不再适应技术的发展,无法有效满足实际测量诉求,因而复合、多元的多仪器传感器测量方式开始出现,被逐渐推广使用。典型传感器系统包括传感器、变换装置、信号处理电路以及测量仪表等方面,其属于单体传感器发展至一定阶段的产物,且随着大规模集成电路与信息技术的进一步探究,传感器检测系统也会不断更新,可以在自动控制程序下完成参数检测工作,简化运行流程,降低检测成本。按工作频率,电学学计量分直流计量和交流计量。

电学计量标准:正常使用仪表时,若被测介质没有压力,则可以在窗口正常显示电流数值;当读数存在偏差时,可以利用电位器进行零点校正,之后再测量介质压力。达到额定数值后,电流表读数为20mA,当发现电流表读数存在偏差时,应启动“FS”电位器,完成零点校正处理。“FS”与“ZO”本身可以调零,但效果会在一定程度上受到限制。中间点压力值需要根据线性关系,完成满量程位与零位的校准,以满足语气的测量需求。在校准时,电流值与标准值存在较大偏差,无法通过简单的操作确定精度,此时仪表则出现故障问题。电学计量包括对物理量单位的统一、传递,也包括工厂、企业、科研机构中的校验工作。LCR测试仪校准
电学计量主要研究内容有:研究制定相应的检定系统、检定规程、技术规范等技术法规。宁波电学计量机构
电学计量之磁场的基本物理量:磁场的基本物理量有以下三个,1、磁感应强度:当磁感应强度与磁场方向相垂直的单位面积上通过的磁通(磁力线)。2、磁通:磁感应强度B与垂直与磁场方向的面积S的乘积,称为通过磁场面积的磁通。3、磁场强度:磁场强度是计算磁场所用的物理量,磁场强度的大小为磁感应强度和导磁率之比。4、磁导率:磁导率表征各种材料导磁能力的物理量一般材料的磁导率和真空中的磁导率之比,称为这种材料的相对磁导率。宁波电学计量机构