故障预测与健康管理是以工业监测数据为基础,通过高等数学、数学优化、统计概率、信号处理、机器学习和统计学习等技术搭建模型算法,**终实现产品和装备的状态监测、故障诊断及寿命预测,为产品和装备的正常运行保驾护航,从而提高其安全性和可靠性。故障预测与健康管理是以工业监测数据为基础,通过高等数学、数学优化、统计概率、信号处理、机器学习和统计学习等技术搭建模型算法,**终实现产品和装备的状态监测、故障诊断及寿命预测,为产品和装备的正常运行保驾护航,从而提高其安全性和可靠性。近年来我们提出的标准化平方包络和数学框架以及准算数均值比数学框架指引了稀疏测度构造的新方向,同时发现了大量与基尼指数、峭度、香农熵等具有等价性能的稀疏测度。基于标准化平方包络和数学框架以及凸优化技术,提出了在线更新模型权重可解释的机器学习算法,**终可以利用模型权重来实时确认故障特征频率,解决了状态监测与故障诊断领域传统机器学习只能输出状态,而无法提供故障特征来确认输出状态的难题。盈蓓德科技开发的监测系统实现了对电动机(马达)、减速机等旋转设备关键参数实时监测,掌握设备运行状态。产品质量监测设备
刀具切削状态的实时监测与管理也是实现制造系统现代化、自动化、柔性化的基础。出现于90年代的智能刀具技术受到越来越多的关注,并在近20年来得到迅速发展。精确地预报刀具在加工中,尤其是在制造成本极高的精密零件加工中的失效时间对提高零件的加工效率和质量、减少生产成本及研制周期具有重要意义。日本京瓷工业陶瓷公司提出一种装有磨损传感器的可转位刀片刀具寿命诊断系统。这种智能刀具系统采用Ceratip传感器,它在正方形的陶瓷刀片表面上,涂覆一层厚度为0.3μm的TiN,刀具在开始切削时,使装有传感器的刀片涂覆层通过电流,形成一微电子回路。当刀具在切削力的作用下磨损时,刀片表面上的TiN涂覆层首先被破坏,这时电流不能通过装有传感器的刀片涂覆层(断电),用电表测量时,此处微电子回路的电阻变为无限大。这时装在刀片上的传感器,将立即向机床控制系统发出信号,由机床控制系统控制机床立刻停机并执行自动换刀程序。这种刀具寿命诊断系统能直接测量出刀尖的磨损情况并快速、准确地预报刀具的失效时间。南通NVH监测台电机监测系统帮助识别处于初期阶段的机械和液压故障,从而制定更为合理的辅助维护计划。
随着电力电子技术、自动化控制技术的不断发展,电机在工业生产以及家用电器中得到了***的应用,在市场竞争中正逐步显示自己的优势。传统的电机在线监测装置多采用电流表、电压表、功率表等较为原始的仪表来进行测量,采用人工读数的方式进行数据的测量、记录和分析,这不仅硬件冗余,系统杂乱,而且操作极为不便,更有甚者,读数误差大,测试结果不准确。有些场合需要进行电机多种参数的监测,这样就势必会加大各种测量仪器的使用以及人力资源的投入。传统的监测方法要求监测人员具有较高的技能和水平,但是由于人为误差的不可避免,这种监测方法无法做定量分析,无法更加准确、实时的掌握电机的运行状态和故障。技术实现要素:本发明提出了一种电机在线监测装置和方法,通过对扭矩、转速、各相电流、电压、温度、输入、输出功率和效率进行实时动态的监测以及对过电压、过电流、过热进行报警停机,解决现有技术中监测参数不能定量分析以及无法更加准确、实时的掌握电机运行状态和故障的技术问题。
基于数据的故障检测与诊断方法能够对海量的工业数据进行统计分析和特征提取,将系统的状态分为正常运行状态和故障状态,可视为模式识别任务。故障检测是判断系统是否处于预期的正常运行状态,判断系统是否发生异常故障,相当于一个二分类任务。故障诊断是在确定发生故障的时候判断系统处于哪一种故障状态,相当于一个多分类任务。因此,故障检测和诊断技术的研究类似于模式识别,分为4个的步骤:数据获取、特征提取、特征选择和特征分类。1)数据获取步骤是从过程系统收集可能影响过程状态的信号,包括温度、流量等过程变量;2)特征提取步骤是将采集的原始信号映射为有辨识度的系统状态信息;3)特征选择步骤是将与状态变化相关的变量提取出来;4)特征分类步骤是通过算法将前几步中选择的特征进行故障检测与诊断。在大数据这一背景下,传统的基于数据的故障检测与诊断方法被广泛应用,但是,这些方法有一些共同的缺点:特征提取需要大量的**知识和信号处理技术,并且对于不同的任务,没有统一的程序来完成。此外,常规的基于机器学习的方法结构较浅,在提取信号的高维非线性关系方面能力有限。新型电机故障监测系统借用物联网、人工智能、边缘计算等技术,提前预判设备故障。
随着科技发展, 各类工程设备的工作和运行环境变得越来越复杂. 作为机械设备的关键零部件, 滚动轴承在长期大载荷、强冲击等复杂工况下, 极易产生各种故障, 导致机械工作状况恶化. 针对轴承的故障预测与健康管理技术应运而生. 若能在故障发生初期即进行准确、可靠的检测和诊断, 则有助于进行及时维修, 避免严重事故的发生. 早期故障检测已成为PHM的关键技术环节之一. 近年来, 随着传感技术和机器学习技术的快速发展, 数据驱动的智能化故障检测和诊断技术受到***关注. 如何利用历史采集的状态监控数据、提高目标轴承早期故障检测结果的准确性和稳定性成为研究热点和难点, 具有明确的学术价值和应用需求.本文关注的是不停机情况下的早期故障在线检测问题. 这种方式有助于实时评估轴承工作状态, 避免因等待停机检查而产生延误、造成经济损失, 因此对早期故障的在线检测越来越受到工业界的重视。大型旋转机械振动状态在线监测系统监测对象涵盖汽轮机、燃气轮机、发电机、泵群、风机等大型旋转设备。功能监测设备
盈蓓德科技自主开发了大型旋转机械在线状态监测与分析系统。产品质量监测设备
就单从我国智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统的产品品质方面来看,相关设备制造行业门槛较低,生产的设备品质参差不齐,存在劣币驱逐良币的现象。目前国内 智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统的设施运营商大部分都采购、运营由其自身或者其关联企业生产、制造的产品,并不完全是由市场行为决定的。随着家庭,办公室,汽车,酒店的智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统的数量的增加和普及,使用者无需再顾虑电池,并且使用者数量也将持续不断地增长。反过来,这也延长了电池的使用寿命。此外,智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统也同时带来其他好处。目前销售在国内发展时,依旧有诸多不便,例如与相关部门、电网、物业等各方所有的申请、协调等工作都是潜在问题,并且目前销售市场还存在一个重大问题及利用率较低。根据调研机构IHS的预计,2016年已经有超过25款智能手机、20款智能手表、200种充电板、150种智能手机壳和50款车型实现了智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统功能。现阶段,智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统技术已经跨越初期应用技术鸿沟,预计在不久的将来普及率会继续增长。产品质量监测设备
上海盈蓓德智能科技有限公司目前已成为一家集产品研发、生产、销售相结合的其他型企业。公司成立于2019-01-02,自成立以来一直秉承自我研发与技术引进相结合的科技发展战略。公司具有智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统等多种产品,根据客户不同的需求,提供不同类型的产品。公司拥有一批热情敬业、经验丰富的服务团队,为客户提供服务。依托成熟的产品资源和渠道资源,向全国生产、销售智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统产品,经过多年的沉淀和发展已经形成了科学的管理制度、丰富的产品类型。上海盈蓓德智能科技有限公司以先进工艺为基础、以产品质量为根本、以技术创新为动力,开发并推出多项具有竞争力的智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统产品,确保了在智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统市场的优势。