监测基本参数
  • 品牌
  • 盈蓓德
  • 型号
  • /
监测企业商机

设备状态监测和故障诊断技术是设备维护手段之一。设备的故障监测诊断技术,就是利用科学的检测方法和现代化技术手段,对设备目前的运行状态进行监测和排查,从而判断出设备运行状态的可靠性,确认其局部或整机是否正常运行。煤矿用机电设备温度振动监测系统***用于煤矿主扇、压风机、钢丝绳牵引带式输送机、滚筒带式输送机、排水泵和电动机、提升机等,有助于掌握设备运行工况中的温度振动数据。

提升机、钢丝绳牵引、滚筒带式输送机、皮带机、空压机、压风机、水泵等煤矿机电设备要求增加电动机及主要轴承温度和振动监测。装置功能:1、提升机、水泵、皮带机等设备电动机主轴承温度振动在线监测2、矿用高压异步电动机轴承温度振动检测诊断3、提升机、水泵、皮带机等设备滚筒主轴承温度振动在线监测4、井下大型机电设备电动机及主要轴承温度振动在线监测5、可以同时收集电机前后轴承温度及电机振动量的数值,对收到的信息分析处理6、系统提供网络接口,可直接与智能矿山网络相连,也可与其它网络内的系统连接;7、在线系统软件可实时监测任意通道的频谱,时域波形、趋势、三维谱图和坐标图,还可通过互联网进行远程监测。 人工智能和深度学习技术已在滚动轴承故障监测和诊断领域取得了成功应用。绍兴旋转机械监测介绍

绍兴旋转机械监测介绍,监测

刀具切削状态的实时监测与管理也是实现制造系统现代化、自动化、柔性化的基础。出现于90年代的智能刀具技术受到越来越多的关注,并在近20年来得到迅速发展。精确地预报刀具在加工中,尤其是在制造成本极高的精密零件加工中的失效时间对提高零件的加工效率和质量、减少生产成本及研制周期具有重要意义。日本京瓷工业陶瓷公司提出一种装有磨损传感器的可转位刀片刀具寿命诊断系统。这种智能刀具系统采用Ceratip传感器,它在正方形的陶瓷刀片表面上,涂覆一层厚度为0.3μm的TiN,刀具在开始切削时,使装有传感器的刀片涂覆层通过电流,形成一微电子回路。当刀具在切削力的作用下磨损时,刀片表面上的TiN涂覆层首先被破坏,这时电流不能通过装有传感器的刀片涂覆层(断电),用电表测量时,此处微电子回路的电阻变为无限大。这时装在刀片上的传感器,将立即向机床控制系统发出信号,由机床控制系统控制机床立刻停机并执行自动换刀程序。这种刀具寿命诊断系统能直接测量出刀尖的磨损情况并快速、准确地预报刀具的失效时间。绍兴混合动力系统监测方案非接触式的刀具监测系统采用噪声特征收集技术,实时收集、分析刀具的噪声,解决传感器安装限制。

绍兴旋转机械监测介绍,监测

传统维护模式中的故障后维护与定期维护将影响生产效率与产品质量,并大幅提高制造商的成本。随着物联网、大数据、云计算、机器学习与传感器等技术的成熟,预测性维护技术应运而生。

以各类如电机、轴承等设备为例,目前已发展到较为成熟的在线持续监测阶段,来实现查看设备是否需要维护、怎么安排维护时间来减少计划性停产等,并能够快速、有效的通过物联网接入到整个网络,将数据回传至管理中心,来实现电机设备的预测性维护。

以各类如电机、轴承等设备为例,目前已发展到较为成熟的在线持续监测阶段,来实现查看设备是否需要维护、怎么安排维护时间来减少计划性停产等,并能够快速、有效的通过物联网接入到整个网络,将数据回传至管理中心,来实现电机设备的预测性维护。

深度学习技术已在滚动轴承故障监测和诊断领域取得了成功应用, 但面对不停机情况下的早期故障在线监测问题, 仍存在着早期故障特征表示不充分、误报警率高等不足. 为解决上述问题, 本文从时序异常检测的角度出发, 提出了一种基于深度迁移学习的早期故障在线检测方法. 首先, 提出一种面向多域迁移的深度自编码网络, 通过构建具有改进的比较大均值差异正则项和Laplace正则项的损失函数, 在自适应提取不同域数据的公共特征表示同时, 提高正常状态和早期故障状态之间特征的差异性; 基于该特征表示, 提出一种基于时序异常模式的在线检测模型, 利用离线轴承正常状态的排列熵值构建报警阈值, 实现在线数据中异常序列的快速匹配, 同时提高在线检测结果的可靠性. 在XJTU-SY数据集上的实验结果表明, 与现有代表性早期故障检测方法相比, 本文方法具有更好的检测实时性和更低的误报警数.滚动轴承是一个故障多发的零件,需要对其进行电机状态监测与故障诊断。

绍兴旋转机械监测介绍,监测

电机抖动是指电机在运行过程中发生的不正常震动,可能会导致机器故障和停机时间增加,进而影响生产效率和产品质量。常见的电机抖动原因包括轴承损坏、不平衡、轴向偏移、电机定子或转子损伤等。为了监测大型电机设备的健康情况,可以采用以下方法:振动监测:通过振动传感器安装在电机上,实时监测电机振动情况,如果振动超过正常范围,则可以发出警报并停机,以防止设备损坏。温度监测:通过温度传感器监测电机内部和外部的温度变化,如果发现异常的温度升高,可能表明电机存在故障。润滑油监测:通过监测电机内部的润滑油质量和油位,及时发现油中杂质和油位不足等问题,防止设备损坏。电流监测:通过电流传感器监测电机的电流变化,可以检测电机是否存在负载过重、不平衡等问题,及时采取措施。声音监测:通过麦克风或声音传感器监测电机的声音,可以判断电机是否存在异响和杂音等异常情况,及时排除问题。以上方法可以结合使用,形成一个完整的电机健康监测系统,有效地预防和解决电机抖动等问题,提高设备的稳定性和可靠性。盈蓓德科技开发的监测系统可以实现电机振动、冲击、加速度、运动监测、控制及测试应用的精确测量。上海动力设备监测技术

设备状态监测诊断分析系统主要实现机械设备参数状态监测、统计分析、预警报警、多维诊断和智能巡检等功能。绍兴旋转机械监测介绍

常见的设备监测数据包含以下几类:1.运行数据:包括设备的运转时间、运转速度、负载情况、温度、压力等参数。这些数据可以反映设备的运行状态和性能表现,以便进行运行效率评估、健康状况评估以及预测维护等。2.电气数据:包括设备的电流、电压、功率、电阻等参数。这些数据可以反映设备的电气性能和电能消耗情况,以便进行能效评估、设备故障诊断等。3.振动数据:包括设备的振动幅值、频率、相位等参数。这些数据可以反映设备的振动情况,以便进行故障诊断和预测维护等。4.声音数据:包括设备的声音频率、声音强度、声音特征等参数。这些数据可以反映设备的声学性能,以便进行故障诊断和预测维护等。5.图像数据:包括设备的照片、视频、红外图像等。这些数据可以反映设备的外观、结构、热特性等信息,以便进行故障诊断、安全检查和维护计划制定等。6.环境数据:包括设备周围环境的温度、湿度、气压、光照等参数。这些数据可以反映设备所处的环境条件,以便进行设备健康评估、预测维护等。绍兴旋转机械监测介绍

上海盈蓓德智能科技有限公司成立于2019-01-02年,在此之前我们已在智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统行业中有了多年的生产和服务经验,深受经销商和客户的好评。我们从一个名不见经传的小公司,慢慢的适应了市场的需求,得到了越来越多的客户认可。公司主要经营智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统,公司与智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统行业内多家研究中心、机构保持合作关系,共同交流、探讨技术更新。通过科学管理、产品研发来提高公司竞争力。盈蓓德,西门子严格按照行业标准进行生产研发,产品在按照行业标准测试完成后,通过质检部门检测后推出。我们通过全新的管理模式和周到的服务,用心服务于客户。在市场竞争日趋激烈的现在,我们承诺保证智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统质量和服务,再创佳绩是我们一直的追求,我们真诚的为客户提供真诚的服务,欢迎各位新老客户来我公司参观指导。

与监测相关的**
信息来源于互联网 本站不为信息真实性负责