任何设备在故障发生之前都会出现一些异常现象或症状,如振动偏大,有异常噪音等。持续状态监测在预测性维护实践中起着重要作用,而关键的监测参数是振动。设备振动揭示了对多个组件问题的重要见解,这些问题可能会降低流程质量并**终导致生产停工。通过油温升高可能是由于轴承运行状态异常,也可能是由于室温高、散热慢、润滑油枯度偏高或运行时间较长等原因。因此,在判断时可能出现两类决策错误;一是把实际处于异常状态的机器误认为正常状态,二是把实际处于正常状态的机器错认为异常状态。如果同时用几个特征,如油温.润滑油分析和噪声来监视机器主轴承的运行状态,判断就较为可靠。由此可见,正确的识别理论是十分重要的。盈蓓德科技开发的监测系统可以实现电机振动、冲击、加速度、运动监测、控制及测试应用的精确测量。旋转机械监测介绍
针对刀具磨损状态在实际生产加工过程中难以在线监测这一问题,提出一种通过OPCUA通信技术获取机床内部数据,对当前的刀具磨损状态进行识别的方法。通过OPCUA采集机床内部实时数据并将其与实际加工情景紧密结合,能直接反映当前的加工状态。将卷积神经网络用于构建刀具磨损状态识别模型,直接将采集到的数据作为输入,得到了和传统方法精度近似的预测模型,模型在训练集和在线验证试验中的表现都符合预期。刀具磨损状态识别的方法在投入使用时还有一些问题有待解决:①现有数据是在相同的加工条件下测得的,而实际加工过程中,加工参数以及加工情景是不断变化的,因此需要在下一步的研究中,进行变参数试验,考虑加工参数对于刀具磨损的影响,并针对常用的一些加工场景,建立不同的模型库。变换加工场景时,通过OPCUA获取当前场景,及时匹配相应的预测模型即可。②本研究中的模型是一个固定的模型。今后需要根据实时的信号以及已知的磨损状态,对模型进行实时更新,从而在实时监测过程中实现自学习,不断提升模型的精度和预测效果。嘉兴EOL监测数据电机监测系统帮助识别处于初期阶段的机械和液压故障,从而制定更为合理的辅助维护计划。
现代化生产企业为了极大限度地提高生产水平和经济效益,不断地向规模化和高技术技术含量发展,因此生产装置趋向大型化、高速高效化、自动化和连续化,人们对设备的要求不仅是性能好,效率高,还要求在运行过程中少出故障,否则因故障停机带来的损失是十分巨大的。国内外化工、石化、电力、钢铁和航空等部门,从许多大型设备故障和事故中逐渐认识到开展设备故障诊断的重要性。管理好用好这些大型设备,使其安全、可靠地运行,成为设备管理中的突出任务。对于单机连续运行的生产设备,停机损失巨大的大型机组和重大设备,不宜解体检查的高精度设备以及发生故障后会引起公害的设备。传统的事后维修和定期维修带来的过剩维修或失修,使维修费用在生产成本中所占比重很大。状态监测维修是在设备运行时,对它的各个主要部位产生的物理、化学信号进行状态监测,掌握设备的技术状态,对将要形成或已经形成的故障进行分析诊断,判定设备的劣化程度和部位,在故障产生前制订预知性维修计划,确定设备维修的内容和时间。因此状态监测维修既能经常保持设备的完好状态,又能充分利用零部位的使用寿命,从而延长大修间隔,缩短大修时间,减少故障停机损失。
故障预测与健康管理是以工业监测数据为基础,通过高等数学、数学优化、统计概率、信号处理、机器学习和统计学习等技术搭建模型算法,**终实现产品和装备的状态监测、故障诊断及寿命预测,为产品和装备的正常运行保驾护航,从而提高其安全性和可靠性。故障预测与健康管理是以工业监测数据为基础,通过高等数学、数学优化、统计概率、信号处理、机器学习和统计学习等技术搭建模型算法,**终实现产品和装备的状态监测、故障诊断及寿命预测,为产品和装备的正常运行保驾护航,从而提高其安全性和可靠性。近年来我们提出的标准化平方包络和数学框架以及准算数均值比数学框架指引了稀疏测度构造的新方向,同时发现了大量与基尼指数、峭度、香农熵等具有等价性能的稀疏测度。基于标准化平方包络和数学框架以及凸优化技术,提出了在线更新模型权重可解释的机器学习算法,**终可以利用模型权重来实时确认故障特征频率,解决了状态监测与故障诊断领域传统机器学习只能输出状态,而无法提供故障特征来确认输出状态的难题。盈蓓德科技开发的监测系统实现了对电动机(马达)、减速机等旋转设备关键参数实时监测,掌握设备运行状态。
电机马达监控系统适用于石油、化工、电力、煤炭、冶金、造纸、水泥等行业,可以实时对低压电动机的运行状态进行监测,对电机各类故障进行监测并存储故障信息,可以生成各类实时曲线(电压曲线、电流曲线等),为电机节能提供依据,并可实现电机节能管理。
系统特点1实时监测电机回路石化、电力、水泥等电机用量大户,需要对电机进行实时监测,监测内容包括电机的电流、电压、电能、频率、电机状态(起动、停止、报警、故障)等。在要求较高的场所还要对工艺参数进行监测,例如温度、压力等。本系统不仅可以监测电机电压、电流还能做能耗统计,工艺参数监测,可以大幅提高企业自动化程度。2集中监控,利于节能马达监控系统对用电大户电机进行实时能耗监测,监测到的数据可以作为节能依据,并可通过系统进行节能控制,利于电机节能应用。3提高自动化水平.电机监控系统是应用电力自动化技术、计算机技术和信息传输技术,集保护、监测、控制、通信等功能于一体的综合系统, 刀具磨损间接监测是通过分析噪声、削力、振动、声发射、电机电流与功率等,间接获得刀具的磨损情况。功能监测技术
电机故障监测和诊断可根据当前检测的运行状态对可能发生的故障进行预判。旋转机械监测介绍
传统方法通常无法自适应提取特征, 同时需要一定的离线数据训练得到检测模型, 但目标对象在线场景下采集到的数据有限, 且其数据分布与训练数据的分布可能因随机噪声、变工况等原因而存在差异, 导致离线训练的模型并不完全适合于在线数据, 容易降低检测结果的准确性; 其次, 上述方法通常采用基于异常点的检测算法, 未充分考虑样本前后的时序关系, 容易因数据微小波动而产生误报警, 降低检测结果的鲁棒性; 再次, 为降低误报警, 这类方法需要反复调整报警阈值. 此外, 基于系统分析的故障诊断方法利用状态空间描述建立机理模型, 可获得理想的诊断和检测结果, 但这类方法通常需要提前知道系统运动方程等信息, 对于轴承运行过程来说, 这类信息通常不易获知. 近年来, 深度神经网络已被成功应用于早期故障特征的自动提取和识别, 可自适应地提取信息丰富和判别能力强的深度特征, 因此具有较好的普适性. 但是, 这类方法一方面需要大量的辅助数据进行模型训练, 而历史采集的辅助数据与目标对象数据可能存在较大不同, 直接训练并不能有效提升在线检测的特征表示效果; 另一方面, 在训练过程中未能针对早期故障引发的状态变化而有目的地强化相应特征表示. 因此, 深度学习方法在早期故障在线监测中的应用仍存在较大的提升空间.旋转机械监测介绍
上海盈蓓德智能科技有限公司是一家从事智能科技、电子科技、计算机科技领域内的技术开发、技术服务、技术咨询、技术转让,计算机网络工程,计算机硬件开发,电子产品、计算机软硬件、办公设备、机械设备(除特种设备)销售。【依法须经批准的项目,经相关部门批准后方可开展经营活动】的公司,致力于发展为创新务实、诚实可信的企业。盈蓓德科技拥有一支经验丰富、技术创新的专业研发团队,以高度的专注和执着为客户提供智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统。盈蓓德科技不断开拓创新,追求出色,以技术为先导,以产品为平台,以应用为重点,以服务为保证,不断为客户创造更高价值,提供更优服务。盈蓓德科技始终关注电工电气行业。满足市场需求,提高产品价值,是我们前行的力量。