多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

对于双光子(2P)成像,散焦和近表面荧光激发是两个相对较大的深度限制因素,而对于三光子(3P)成像,这两个问题**减少。  然而,由于荧光团的吸收截面远小于2P,三光子成像需要更高的脉冲能量才能获得与2P相同激发强度的荧光信号。  功能性3P显微镜比结构性3P显微镜要求更高,后者需要更快的扫描速度以便及时采样神经元活动。  为了在每个像素的停留时间内收集足够的信号,需要更高的脉冲能量。  复杂的行为通常涉及大规模的大脑神经网络,这些网络既有本地连接,也有远程连接。  为了将神经元的活动与行为联系起来,需要同时监测* * *分布的超大型神经元的活动。  大脑中的神经网络将在几十毫秒内处理输入的刺激。  为了理解这种快速神经元动力学,MPM需要快速成像神经元的能力。  快速MPM方法可分为单束扫描技术和多束扫描技术。  多光子显微镜是衡量一个国家制造业和高科技发展水平的重要标准之一。激光扫描多光子显微镜Ultima 2P Plus

激光扫描多光子显微镜Ultima 2P Plus,多光子显微镜

我们要指出的是,单光子激发荧光和双光子激发荧光,是从荧光产生的机理上来区分的。而共焦则是荧光显微镜的一种结构,其目的是为了,通过共焦结构,提高整个荧光显微镜的空间分辨率。所以共焦荧光显微镜可以根据激发光源的不同,实现单光子共焦荧光成像或者双光子共焦荧光成像。往往一个普通的双光子荧光显微镜(没有共焦结构)其空间分辨率也可以达到单光子共焦荧光显微镜的水平。这样就可以简化整个系统,相对来说,就提高了激发光源的利用率,以及荧光的探测效率,这个也是我们提倡双光子荧光成像的原因之一。双光子荧光共焦显微镜由于双光子效应和共焦结构,分辨率则会更高,而我们通常说的共焦显微镜都是指单光子激发荧光的。激光扫描多光子显微镜Ultima 2P Plus全球多光子显微镜主要生产地区分析,包括产量、产值份额等。

激光扫描多光子显微镜Ultima 2P Plus,多光子显微镜

单光子激发荧光的过程,就是荧光分子吸收一个光子,从基态跃迁到激发态,跃迁以后,能量较大的激发态分子,通过内转换把部分能量转移给周围的分子,自己回到比较低电子激发态的比较低振动能级。处于比较低电子激发态的比较低振动能级的分子的平均寿命大约在10s左右。这时它不是通过内转换的方式来消耗能量,回到基态,而是通过发射出相应的光量子来释放能量,回到基态的各个不同的振动能级时,就发射荧光。因为在发射荧光以前已经有一部分能量被消耗,所以发射的荧光的能量要比吸收的能量小,也就是荧光的特征波长要比吸收的特征波长来的长。

快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统需要依赖于远程聚焦、SLM和可调电动透镜。利用多光子显微镜的多点光ji活能力,我们可以研究多个神经细胞之间的连接和控制。

激光扫描多光子显微镜Ultima 2P Plus,多光子显微镜

有许多方法可以实现快速光栅扫描,例如使用振镜进行快速2D扫描,以及将振镜与可调电动透镜相结合进行快速3D扫描。而可调电动式镜头由于机械惯性的限制,无法在轴向快速切换焦点,影响成像速度。现在它可以被空间光调制器(SLM)取代。远程对焦也是实现3D成像的一种手段,如图2所示。LSU模块中,扫描振镜水平扫描,ASU模块包括物镜L1和反射镜M,通过调整M的位置实现轴向扫描该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速轴向扫描。为了获得更多的神经元成像,可以通过调整显微镜的物镜设计来放大FOV。然而,大NA和大FOV的物镜通常很重,不能快速移动以进行快速轴向扫描,因此大FOV系统依赖于远程聚焦、SLM和可调电动透镜。点扫描多光子显微镜可以深入样本并捕捉高质量的图像,但这个过程极其缓慢,因为图像是一次形成一个点。布鲁克多光子显微镜峰值功率密度

多光子显微镜的发展历史充满了贡献、开发、进步和数个世纪以来多个来源和地点的改进。激光扫描多光子显微镜Ultima 2P Plus

快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统依赖于远程聚焦、SLM和可调电动透镜。激光扫描多光子显微镜Ultima 2P Plus

因斯蔻浦(上海)生物科技有限公司专注技术创新和产品研发,发展规模团队不断壮大。公司目前拥有专业的技术员工,为员工提供广阔的发展平台与成长空间,为客户提供高质的产品服务,深受员工与客户好评。诚实、守信是对企业的经营要求,也是我们做人的基本准则。公司致力于打造***的nVista,nVoke,3D bioplotte,invivo。一直以来公司坚持以客户为中心、nVista,nVoke,3D bioplotte,invivo市场为导向,重信誉,保质量,想客户之所想,急用户之所急,全力以赴满足客户的一切需要。

与多光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责