案例2:ai基因与邻近增强子的环化共扩增 本文作者利用染色体外环状DNA测序探讨了ai基因及其邻近增强子通过环状染色体外DNA的形式进行扩增事件,研究过程中发现了EGFR基因在成胶质细胞瘤中存在与其上游约130kb的非编码序列共同扩增的特征,EGFR基因案例表明tumour细胞中的ai基因通过高级扩增与环化而形成的对自身调控活性的增强,是一个十分有效的促ai机制。总之,这项研究综合利用各项计算分析和实验手段,first次揭示了增强子在ai基因环化扩增介导的促ai效应中所发挥的重要作用,这一机制也为抗tumour和诊断提供新的方向和理论依据。2019年关于环状RNA的国自然审批金额高达8000多万。贵州云序环状DNA测序
近日,Nature杂志上发表了颠覆性研究成果:在tumour中,主要的ai基因转录本是直接来自于环状DNA的,而环状DNA的染色质是高度开放的,环状DNA的ai基因能够大量表达,同时缺乏丝粒,导致不遵照孟德尔定律进行遗传,这种特性使得环状DNA是驱动tumour异质性的重要机制。由此可见,由于其结构和表达的特异性,环状DNA可以影响细胞生命活动,促进tumour细胞演进和适应性进化,增加了基因组的可塑性和不稳定性。目前,环状DNA不onlyonly可以作为一种新型特异的tumour标志物,还在tumour发生和发展机理研究中发挥着重大的潜在价值。可以预见的是,环状DNA将迅速成为新的科研热点,甚至会对传统遗传学和基因组学带来**性影响。贵州云序环状DNA测序专业的生物信息学团队,通过优化的算法能够高效识别染色体外环状DNA。
eccDNA以颠覆传统认知的方式重新走到科研舞台的中心,必将在未来的一段时间掀起一场有关基因扩增、转录的大讨论。我们已经习惯了观察基因的缺失、突变、插入和移位,eccDNA的产生从新的角度让科研工作者去思考基因组存在的动态性和多样性。由此,tumour的异质性、tumour微环境、液体活检和耐药性等相关研究必定会围绕eccDNA展开更多集中式的研究和探索,有理由相信这次2019年年末的Nature和Cell文章的发表将成为里程碑式的作品,推动未来三到五年内有关eccDNA研究的新方向。
eccDNA究竟是如何形成的,目前尚没有十分确切的解释,目前推测的可能机制包括以下几种:(A)DNA复制过程中,形成发夹结构,接着在DNA聚合酶的作用下,通过滑动形成环状,并从染色体中切割下来并复制形成双链环状DNA,这种形成方式的特点是染色体原始位置上的这段序列发生了缺失;(B)DNA复制时形成R-loop结构,在这种结构中,其中一条链发生折叠,形成环状结构并切割下来,形成环状DNA,发生断裂的双链通过DNA的损伤修复机制进行补齐,因此这种方式不会造成染色体原始序列的损伤;(C)通过DOIRA模型,通过双链复制的方式形成;也不会造成原始序列损伤;(D)通过双链的同源区域的重组,造成双链同时断裂,往往通过这种方式会产生Mb以上的较大的eccDNA,并且原始序列会发生缺失。目前,环状DNA可以作为一种新型特异的tumour标志物。
组织细胞环状DNA测序游离于染色体基因组之外的DNA (extrachromosomal DNA,ecDNA)被发现常常以环状的形式存在,这种形式的DNA被称为环状DNA (extrachromosomal circular DNA,eccDNA)。目前也习惯将巨大的环状DNA(>1Mb)称为ecDNA, 而将相对较小的环状DNA称为eccDNA。 传统观点认为真核基因组通常形成稳定的线性染色体。但best新的研究表明:无论是在正常体细胞还是ai细胞中,都存在大量染色体外环状DNA。云序生物是国内best早提供 eccDNA 测序服务的公司,云序在2018年已就启动了组织细胞 eccDNA 测序服务的开发。可以预见的是,环状DNA将迅速成为新的科研热点,甚至会对传统遗传学和基因组学带来**性影响。四川研究环状DNA
样品运输:样品置于1.5mL Eppendorf管中,封口膜封好,干冰运输,DNA可用冰袋运输。贵州云序环状DNA测序
聚焦孕期女性血浆当中的eccDNA检测。不同于线性DNA,eccDNA长度更长,母系来源的eccDNA比胚胎来源的eccDNA分子长度也更长。成环位点上下游的信息有效的提示了可能的eccDNA形成机制,为接下来eccDNA的进一步研究奠定基础。这些成果都有利于推动eccDNA在液体活检以及生物标志物方面的应用。 2020年年初的寒潮并不能冰冻eccDNA在科研界的火热。重量级期刊的文章发表已经为我们一年的科研指明了方向,游走在线性DNA之外的eccDNA将是生物医学领域best闪亮的星。新分子,新方向,机遇与挑战并存,运气与实力同在,祝愿各位生物医学的工作者在新的一年能抢占先机,eccDNA将是您科研新年新气象的很好的选择。贵州云序环状DNA测序