十二烷基β-D-麦芽糖苷(DDM)在吸入制剂中的***研究进展(2024-2025)一、新型鼻喷制剂应用突破DDM作为关键吸收增强剂,在2024-2025年取得多项重要临床应用进展:肾上腺素鼻喷雾剂(neffy®):2024年8月获批的新型单剂量鼻喷雾剂,每0.1mL含2mg肾上腺素十二烷基β-D-麦芽糖苷DDM通过促进紧密细胞连接短... 【查看详情】
DDMDDM十二烷基麦芽糖苷在蛋白质类药物稳定中的作用除促渗功能外,DDM还能抑制蛋白质聚集。其疏水烷基链与蛋白表面疏水区结合,减少分子间相互作用,使冻干多肽的溶解度提升60%。在重组人抗体Fc片段制剂中,DDM使液体制剂的室温稳定性从7天延长至30天,且鼻给药后脑组织分布浓度提高3倍。这种双重功能使其成为生物药鼻递送的优先辅料,尤其适用... 【查看详情】
配伍因素DDM与不同药物及辅料配伍时的稳定性表现:与蛋白质类药物:能有效稳定光活性反应中心复合物,抑制蛋白质降解通过与蛋白质表面的疏水区域结合,减少分子间相互作用,赋予抗聚集活性4在抗体片段、胰岛素等大分子吸入制剂中表现出良好的稳定效果4与其他辅料:与乳糖配伍可改善颗粒表面电荷分布,提高稳定性4与磷脂类(如DPPC)组合可形... 【查看详情】
DDM十二烷基麦芽糖苷在儿童鼻喷制剂中的适配性儿童鼻腔结构较小,传统鼻喷剂易引发呛咳或剂量不均。DDM的低刺激性特性使其成为儿科制剂的理想选择。例如,含DDM的舒马曲坦鼻喷剂(Tosymra®)通过微米级雾化技术,使药物颗粒均匀沉积于鼻腔后部,儿童患者接受度达92%。此外,DDM可减少给药频率(如Valtoco®每日*需1-2次),***... 【查看详情】
二、DDM与不同类型药物的稳定性相互作用DDM与蛋白质的相互作用研究表明,其能有效稳定光活性反应中心复合物,在非水介质中结构变化较小,相比其他表面活性剂(如DPC)能更好地保护蛋白质4。冷冻电镜分析显示,DDM提取的膜蛋白复合体能保持完整结构(分辨率达3.2Å)2.小分子药物对于小分子药物,DDM主要通过:胶束包裹:提高难溶***... 【查看详情】
DDM与其他吸入辅料的协同作用1. DDM-乳糖系统乳糖作为吸入制剂常用载体,与DDM配伍可产生协同效应:DDM改善乳糖颗粒表面电荷分布提高药物-载体结合力,减少分离现象优化颗粒空气动力学直径(1-5μm)临床数据显示可使肺部沉积率提高30-40%2. DDM-磷脂复合物DDM与磷脂类辅料(如DPPC)组合应用于脂质体吸入系统:形成稳定复... 【查看详情】
提高DDM稳定性的技术手段***优化:与乳糖、磷脂等辅料形成协同稳定系统4控制DDM添加量在比较好浓度范围(干粉0.1-0.5%,液体150-300U/mL)4添加适量抗氧化剂(如维生素E)防止氧化降解3工艺控制:严格控制生产环境湿度(RH<40%)7优化混合顺序和工艺参数4采用低温粉碎技术保持DDM活性11包装改进... 【查看详情】
8.DDM与环糊精类辅料的性能对比环糊精(如羟丙基-β-环糊精)是常用的鼻喷促渗剂,但存在黏膜刺激和药物包埋效率低的问题。DDM在以下方面表现更优:(1)促渗效率高,使分子量5kDa药物的吸收率提升8倍,而环糊精*2-3倍;(2)无包埋限制,适用于亲脂/亲水双***物;(3)成本更低,DDM合成原料(麦芽糖、十二醇)较环糊精便宜40%。但... 【查看详情】
DDM十二烷基麦芽糖苷在老年患者中的应用优势老年人鼻腔黏膜萎缩,传统鼻喷剂吸收率下降。DDM十二烷基麦芽糖苷通过增强黏膜渗透性,使药物生物利用度在老年群体中保持稳定。例如,含DDM十二烷基麦芽糖苷的***鼻喷剂(Valtoco®)在65岁以上患者中的血药浓度波动系数(CV)*15%,较口服制剂(CV 35%)***降低。此外,DDM十二烷... 【查看详情】
DDM十二烷基麦芽糖苷在疫苗鼻喷递送中的潜力疫苗鼻喷可***黏膜免疫,产生IgA抗体及全身性免疫应答。DDM十二烷基麦芽糖苷能稳定疫苗抗原(如流感病毒蛋白),并通过促渗作用增强其穿透鼻黏膜的能力。动物实验表明,含DDM十二烷基麦芽糖苷的鼻喷疫苗使小鼠肺组织病毒载量降低90%,效果优于肌肉注射。目前基于DDM十二烷基麦芽糖苷的COVID-1... 【查看详情】
PLLA微球的降解机制与动力学PLLA微球在体内的降解是一个复杂的水解过程。PLLA是聚乳酸(***)的左旋异构体,由左旋乳酸(L-LacticAcid)单体通过缩聚反应合成。其分子链呈规则的螺旋结构,具有高度结晶性。在体内通过水解逐步降解为乳酸,**终代谢为二氧化碳和水25。降解周期通常为2~12个月,还可以根据加入修饰剂的不同来改变降... 【查看详情】